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CALCULATIONS a’

TECBNICAL NOTE 3723

THE FLOW OVER AN INCLZNED FIAT PLATE

AT FREE-STREAM MACH NUMBER 1

. By Walter G. Vincenti, Cleo B. Wagoner, and
Newmsn H. Fisher, Jr.

A numerical solution has been obtained of the complete equations of
inviscid compressible flow for the case of an inclined flat plate at free-
stream hkch number 1. The mixed flow about the lower surface of the plate
is found by relaxation solution of a boundary-value problem in the hodo-
graph plane. Considerable preliminary analysis is required by the pres-
ence of the free-stresm singularity, which must be incorporated analyti-
cally into the numerical work. The methods devised for this part of the
work may hawe application in other problems of trsnsonic flow. The super-
sonic flow on the upper side of the plate is found in the physical plane
by a standard form of the method of characteristics. The calculations
here are carried only as far as the end of the separated region that
appears on the u~er surface nesr the leading edge. The results, which
are for an angle of attack of 13°, shaw the pressure distribution on the
lower surface and the detailed flow field about the lower surface and the
leading edge.

The results for the flow field show that the lsrge changes of velocity
that occur near the leading edge are confined to a surprisingly small part
of the field. The stagnation point on the underside of the plate, for
exsmple, is found to be only 0.0016 uf the chord aft of the leading edge.
(This is in contrast to a value of O.(Yjfor incompressible flow about a
plate at the same angle of attack.) The average radius of curvature of
the sonic line as it approaches the leading edge is even smaller. To see
the details here, in fact, it is necessary to plot the results to a scale
in which the displacement of the stagnation point aft of the leading edge
is approximately 50 inches.

The calculations of the pressure distribution indicate that Guderley?s
earlier solution on the basis of the transonic Small-disturbancetheory
gives reasonably accurate results even at the present moderately large
angle of attack. If the small-disturbancevalues are corrected by a method
due also to Guderley, the error is slmost completely eliminated except at
the leading edge where the corrected solution still cannot represent the
true flow.
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2 NACA TM 3723

INTRmmrmw

The problan of the two-dimensional flow over an inclined flat plate
at free-stresm Mach number 1 has been discussed by Guderley in reference 1.

,.

This problem is of interest as an example of the unsymmetric transonic
flow that occurs around a sharp-nosed airfoil when the singleof attack is
large compared with the nose angle. (On a plate, where the nose angle is
zero, any angle of attack meets this description.) A solution of the
problem was given by Guderley on the basis of the small-disturbancetheory
for trausonic flow. This solution, arrived at by an ingenious analytical
procedure, gives useful information on the pressure distribution on both
surfaces of the plate. Owing to the approximations involved in the theory,
however, the results are limited to angles of attack which, though large
in comparison with the nose angle, are in themselves stilJ_smsU. More
important, the details of the flow at the leading edge, which are of
fundamental interest, do not appear in the analysis.

The work to be described in the present paper was conceived as part
of a study of the transonic flow around leading edges. To supply the
details missing in the small-disturbance analysis, it is proposed here
to solve the flat-plate problem using the complete equations of inviscid
compressible flow. The exclusion of viscosity mey, it is realized, lead
to some error at the sharp leading edge. If past ewerience is any guide,
however, an inviscid solution will be of value toward understanding the
actual viscous flow. It will also provide, for one specific case, a
check of the accuracy of a known small-disturbance solution.

Since the analytical problem for the complete equations is a formidable
one, the solution in the present work is carried out largely by num&rical
means.~ As in Guderley?s analysis, the mixed flow over the lower surface
of the plate is found by solution of a boundary-value problem in the hodo-
graph plane. The only real difficulty here is with the free-stream singu-
larity, which must be incorporated analytically into the numerical work.
The numerical procedures themselves axe an extension of the work tieady
reported in references 3 and 4. The supersonic flow on the upper side of
the plate is found in the physical plane by the method of characteristics.
In the present report this part of the calculation is carried only as far
as the end of the closed region of separation that appears on the upper
surface adjacent to the leading edge. It is hoped eventually to complete
the solution to the trailing edge, but owing to circumstances outside the
work this will not be possible in the immediate future.

The calculated results, which are for an angle of attack of 13°, show
the pressure distribution on the lower surface and the flow field about the—

%l?heanalytical solution of the two-dimensional airfoil ?moblem
.;

for the complete equations has been treated byl?rsmkl in refe;ence 2,
which came to the authors? attention after the present work was under way.
Frankl gives a general solution in the form of an infinite series of
Chaplygin solutions. The application of this general solution to a spe-
cific boundsry-value problem, however, is not discussed.

.-—-—— .— _—.- --—-- _ .———-—.



NACA TN 3723 3

lower surface and the leading edge. In view of the lmown properties of
flows near the sonic flight speed (see refs. 5 and 6), the results should
be applicable for a ramge of free-stream Mach number either side of 1. This
is especially true of the flow in the inmediate vicinity of the leading
edge. Because of the nature of the flow field, the findings for the lower
surface of the plate can be applied, within minor limitations, to the flow
on the underside of sny sharp-nosed airfoil with a flat lower surface.

As in reference 3, the report is divided into two parts. Part I con-
tains an outline of the general problem and its solution and a discussion
of the find results. Part II supplies the mathematical details. A sum-

MSXY of t~ notation is given in ~ appendix at the end of the report.

The relaxation calculations for the lower surface of the plate were
performed with unusual skill and diligence byMrs. Msrjorie Sill. The
characteristics construction on the upper surface was programmed for the
electronic computer by Meyer M. Resnikoff, who contributed many valuable
ideas to this phase of the work.

I - GENERAL PF061EMAND FINALRESUEIS

GENERAL PRcmIEM

Description of Flow Field

The inviscid flow over an
inclined plate at free-stream
Mach number 1 has been described
by Guderley in reference 1. A
qualitative picture of the flow
is given in sketch (a), which
is essentially a reproduction
of figure 1 of Guderley~s
report.

As shown in the sketch,
there exists at az@e of attack
a lsrge region of subsonic flow
in front of and beneath the
plate. This region is bounded
by the lower surface DB of the
plate, by sonic lines DO and BO
springing frm the leading and
trailing edges, andby the free
stream O at infinity. In this
region, as in incompressible
flow, the fluid forward of the
plate is deflected upward. As
a result, a stagnation point
C occurs on the luwer surface
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4 NACA TN 3723

of the plate near the leading edge. At this point the central (or “stag-
nation”) streamline branches to run both fore end aft along the plate.
Sonic speed is reached on the surface of the plate precisely at the lead-
ing and trailing edges D and B. The sonic line from each of these edges
leaves the plate at right angles to the luwer surface. Downstream of each
sonic line there occurs a supersonic expansion fan centered at the edge.

Expansion fans of the type encountered here have been described in
detail in references 3 and 7. ~ the limit of the edge itself, the fan
approaches the classical.F&sndtl+eyer flow. Away fran the edge, however,
the elementary expansion waves (or Mach waves), which me straight in the
Rrandtl-Meyer case, now bend upstream toward the sonic line. Some of
these expansion waves, in fact, meet the sonic line, where they are
reflected as compressions; others pass entirely downstfesm of the line.
The wave that separates the two classes of expansion waves, the so-called
‘tlimitingwave” (see EO and AO in sketch (a)), approaches the sonic line
at infinity. Obviously - and this is the essential point - the flow in
the subsonic region must depend in part on conditions in the supersonic
fan ahead of the lhiting wave. It is, however, completely independent
of conditions downstream of this wave.

The details of the flow over the upper surface of the plate are not
completely certain. Even in the absence of viscosity, a separated region
must be expected adjacent to the leading edge. This follows from the
fact that the angle of turn called for at the edge - 1800 in the present
case - is greater thau the 130° attainable by expansion to a vacuum. In
any real fluid, of course, the pressure actually attained in the separated
region will be ftied by viscous phenomena. From the standpoint of the
present purely inviscid theory, however, this pressure is to be regarded
as an assignable parameter (subject to one restriction to be mentioned
later). Once the flow has separated from the plate, the central stream-
line follows a path of constsnt pressure. To do this in the presence of
the compression waves reflected from the sonic line, it must curve back
egain towd the plate. At some point the streamline will presumably
reattach to the plate and be deflected to the direction of the upper sur-
face by an oblique shock wave. Downstream of this reattachment wave, the
flow will proceed at decreasing supersonic speed to the trailing edge,
where a second shock wave will occur. The foregoing is, at least, a
plausible description of the flow as it might be qected to exist on the
upper surface. It is not inconceivable, however, that the shock system
could be more complicated than that described here.

The foregoing discussion implies one restriction that has not yet
been stated. This is that the pressure assigned in the separated region
must be not greater than that which exists where the limiting wave meets
the leading edge. For pressures greater than this value, the limiting
wave would have to start, not at the leading edgq, but at some point on
the separated streamline. In this situation the part of the streamline
between the leading edge snd the foot of the limiting wave would be titer-
dependent with the subsonic field. The-problem would then be sli~tl~
difierent from that considered here, tho-~ the methods

-——-.. ---- .—. — —. .-. ..— — — .— —.
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report could again be used to obtaina solution. Since ~ flow on thg
underside of the plate would be little affected in any event, this second
possibility wiLL be ignored, and the earlier situation will.be presumed
to exist.

As shouldbe apparent from this discussion, the analytical problem
falls into two parts. To calculate the flow on the lower surface of the
plate, a transonic boundary-value problem must be solved in a region con-
sisting of the subsonic field and those portions of the two supersonic
fans ahead of their limiting waves. Once conditions on the upper limiting
wave are lmown, the calculation of the field above the plate is an initial-
value problem in purely supersonic flow. In the first problem, the flow
is everywhere irrotational. ~ the second problem, it is irrotational as
far as the reattachment wave and rotational after that.

Method of Analysis

The method of .aalysis is described in detail tipart II of the
report. The mixed flow about the underside of the plate is foundby
numerical (i.e., finite-difference) solution of aboundsry-value problem
in the hodograph plane. In this formulation of the problem, the free
stream appears as a singularity - that is, an infinity - at a point on
the sonic circle. This singularity consists of two supe~osed parts, one
antisymmetric and similar to a doublet, the other synmetric and similar
to a vortex. To calculate the flow, two separate boundary-value problems
sre solved, each containing one of the elementary singularities. The
final result is then obtained by combining the two solutions to meet the
condition th& the central stresmUne branches at the stagnation point.

As in all finite-difference work, the singularitiesmust be incor-
porated into the solutions analytically. This is complicated in the pres-
ent case by the fact that simple closed expressions for the singularities
are not available for the complete differential egyation. A suitable
method can be devised, however, based on the use of known results for the
Tricomi equation. The method takes fuXL account of the primary effect of
the singularity. A smaU approximation is involved, however, in that
singularities in certain of the higher-order derivatives (i.e., second
order aud above) are ignoredin the numerical calculations. Experience
indicates that the error from this source is probably smaller than that
involved in the finite-difference process itself. It is sure to be
negligible in the vicinity of the plate.

The finite-difference solution of the boundsry-value problems entails
several elements of novelty. These are made necessaryby the presence of
the singularity and by the mixed nature of the flow field. In the sub-
sonic region the finite-difference equations are established in what is
essentially a polar coordinate system. Except for the inclusion of the
singularity, the procedures here are more or less standard. In the super-
sonic region the equations are set up in characteristic coordinates. The
procedures here and at the transition from one coordinate system to the

. .. .——— — — —..— —. — —— —



6 NACA TN 3723

other at the sonic line are somewlxa.tunusual. Solution of the system of
finite-difference equations is carried out on desk calculators by a com-
bination of relaxation techniques and step-by-step procedures. Once the
solution is obtained in the hodograph plane, transformation to the physical
plane is a simple matter.

The purely supersonic flow over the upper surface of the plate is
found in the physical plane by a stsndsrd form of the method of character-
istics. In the present work a completely numerical-process W= used, in
contrast to the more usual semigraphical procedures. This was done for
two reasons: (1) The high Mach numbers and correspondingly small Mach
angles in the vicinity of the separated region made say semigraphical-
procedure of doubtful accuracy; and (2) the lsrge number of points required
in the characteristicsnet made the use of automatic computing machines
maudatory. The numerical work was carried out on an electronic digital
computer. As mentioned in the introduction, the calculations for this
part of the problem have been carried only as far as the reattachment
point on the upper surface. For the time being they have also been con-
fined to only one value of the separation pressure. It is hoped that the
work csn be carried on to the trailing edge and repeated for other values
of the separation pressure at a later date.

RESUUTS AND DISCUSSION

Calculations have been made, on the basis of the methods outlined,
for an angle of attack of 13°. T& work was carried out for a ratio of
specific heats y of 1.405 instead of the more usual value of 7/5. This
was done because it was originally intended that the characteristics con-
struction would be made by a semigraphical version of Guderley~s method,
for which extensive tables on the basis of the former value are available
(ref. 8). When this method was abandoned in favor of automatic numerical
computation (which does not utilize the tables), the calculations for the
lower surface with 7 = 1.405were too far along to sltero The final
results in the physical plane are shown in figures 1 and 2 and are dis-
cussed in the following paragraphs. (For results in the hodograph plane,
see part II of the report.)

face

Flow Field

Lower surface and leading edge.- The
and leading edge is shown in figures

these figures, it will perhaps be best to
in some detail.

flow field about the lower sur-
l(a) through. To understand
follow them through consecutively .

The first figure (l(a)) shows the complete plate from the leading
edge to the trailing edge. ~ this and the subsequent parts of figure 1,
size is indicated by a scale of s/c, where s is any length in the field

.——
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and c is the chord of the plate. StresniLinesare identified by a value
of [5( Y/C)]mj which denotesthe verticaldistance at infinity between the
streamline in question and the central (or stagnation) streamline. Con-
tours of constant fluid properties are identifiedby the value of the local
Mach numiber M.

The most striking thing about figure l(a) is the extraordinarily
small size of the region into which ,thelarge chauges of flow arouud the
leading edge are concentrated. This is typifiedby the distance from the
stagnation point to the leading edge, along which the flow must accelerate
from M =OtoM= 1. Even at the fairly large angle of attack of 13°,
this distance is only 0.0016 of the chord, which is too small to appear
in the present figure. In incompressible flow a%out a lifting flat plate
at the ssme sngle of attack, the corresponding result as given by con-
formal transformation (see, e.g., ref. 9) is 0.05 of the chord. (T&iously,
the stagnation point must move forward ~kedly as the free-stream Mach
number increases in the subsonic range. When Mach number 1 is reached,
it is, to the scale of the plate as a whole, practically coincident with
the edge. The representation of the leading-edge flowbya singulsri~
in which the stagnation point lies precisely at the edge is swell-known
approximation in thin-airfoil theory. The present results suggest that
the appraimation should be even closer to the truth at transonic speeds
(as, for example, in the work of Guderley (ref. 1)) than it is in the
classical incompressible case.

As with the displacement of the stagnation point, the detaib of the
sonic line and limiting wave are not visible in figure l(a). As nearly
as cau be seen from this figure, the sonic line meets the leading edge
more or less directly from above, while the limiting wave comes into the
edge slightly from the rear. This appearance is, of course, at variance
with the qualitative description given earlier in confection with
sketch (a). If the results of figure l(a) were ti that were available,
however, one might be inclined to accept the statements of the present
psrsgraph as correct.

That the true state of affairs is quite different begins to appear
in figure l(b). This figure shows the flow over the forward portion of
the plate to a scale 20 tties that of figure l(a). The present figure
also includes the separated streamline, which will be discussed later.

Enlargement to the scale of figure l(b) is sufficient to show the
displacement of the stagnation point. A pronounced curvature of the sonic
line is also visible here, and this line seems now to meet the leading edge
from directly forward of the plate. The latter situation is, however,
still different from that described in connection with sketch (a). The
limiting wave in figure l(b) appears to meet the edge from the rear, but
with greater slope and more curvature than were visible before.

. ---- --—— .. —-— ---— —— ——— —-—. — -—



8 NACA TN 3723

To examine the situation at the leading edge in still greater detail, ,
the results are replotted once more in figure l(c), this time to a scale
200times that of figure l(a). Here at last it appears that the sonic
Ene does indeed approach the leading edge from the underside of the plate.
The manner inwbich the approach takes place, however, is still not clear.

To see the latter details, one is forced ultimately to a plot such
.

as figure l(d). This plot has a mq@fication 5000 times that of the
original figure l(a). Because of this very large magnification, the stag-
nation point in the present plot would lie approximately 50 inches off the
page to the right. The trailing edge (whose position nevertheless deter-
mines the characteristic length in the problem) would be slightly more
than 1/2 mile a-. Despite the very lsrge scale of figure l(d), the
results that appear here can be specified with good accuracy. This is
because the hodograph transformation has the property of greatly enlarging
the region near the leading edge relative to the rest of the field. Thus,
a perfectly reasonable mesh interval f,orthe finite-difference scheme in
the hodograph plane (see part II) can provide sufficient data to define
the lines of figure l(d) without difficulty. To obtain comparable accuracy
in calculations in the plqcsicalplane an impractically small interval would
be required in the vicini@ of the leading edge.

The contrast between the leading-edge flow as it appears in fig-
ure l(d) and as it appeared originally in figure l(a) is obvious. In
figure l(d) it canbe seen that the sonic line does in fact meet the lead-

f

ing edge at right angles to the lower surface of the plate. (It can be
shown that the curvature of the sonic line where it meets the plate is
infinite.) The limiting wave in figure l(d) comes into the edge from a
direction slightly forward of the vertical. It thus approaches the plate
much as the sonic line seemed to in the small plot of figure l(a). To
the present scale it is also possible to see something of the way in which
the influence of the leading edge is propagated in the supersonic region.
This is shown by the Mach lines included in the figure. The reader may
find it interesting to compare these results with a similar plot of the
Mach lines and streamlines in the classical Wandtl-Meyer flow (see,
especiall.y,.p.278 of ref. 10 and p. 171 of ref. n).

Separated stresniline.-The separated streamline is shown in fig-
ures l(b) through l(d) for the single case that has been calculated. In
this case the pressure ps on-the separated streamline is given by

Ps/P& = 0.000738, where Ph is the total pressure in the free stream.

This is precisely the value of the pressure ratio that exists where the
limiting wave meets the leading edge - that is, we have assumed that the
flow remains attached to the leading edge until the limiting wave is
reached and then immediately separates (see “Description of Flow Field”).

.

The corresponding Mach number Ms on the separated streamline is 5.88,
and the angle at which the streamline leaves the plate is 83-1/2°relative
to the free-stresm direction.

—— —.. -— —- .—. ——.—— -- ----



NACA TN 3723 9

As can be seen from figure l(b), the over-all dimensions of the
separated region are of the same order of magnitude as the Ustance frm
the leading edge to the stagnation point. The length of limiting wave that
is needed to calculate the sep~ated streamline is marked off in fig-
ure l(b) by the point P. This is the point from which the downgoing
Mach wave to the reattachment point leaves the limiting wave. The angle
through which the flow must be deflected at the reattachment point turns
out to be 19°. This is well below the msximum deflection that can be
attained through an oblique shock wave in an inviscid flow at the assumed
Mach number of 5.88. lMcept for these observations, little can be said
about the separated flow until results become available for other values
of the pressure in the separated region.

Pressure Distribution

The distribution of pressure coefficient Cp on the lower surface
of the plate is shown in figure 2. Results for the complete surface are
given in figure 2(a) and for the region between the leading edge and stag-
nation point in figure 2(b). Included for comparison in figure 2(a) are
three additional sets of results obtained as follows:

(a) Directly from Guderley’s small-disturbance analysis for h = 1
(ref. 1),

(b) From Guderley’s small-disturbance analysis with the approximate
relationship between his hodograph variable q and the dimen-
sionless speed w replaced by an exact relationship (see
eq. (lOa) of part II; this procedure was suggested and used by
Guderley for a different problem in ref. 12),

(c) From the classical methods of conformal transformation for
incompressible flow (see, e.g., ref. 9).

It can be seen from figure 2(a) that Guderleyts work of reference 1
somewhat overestimates the pressure over the entire chord. The average
value of Cp given by his analysis is 0.59; that of the present work is
0.525. According to Guderleyts calculations, the center of pressure is.
at 35 percent of the chord; the present work puts it at 37.9. Considering
the fairly large angle of attack, however, the quantitative accuracy of
the smaU-disturbance analysis is remarkably good. The only major error
in the small-disturb~ce analysis occurs near the leading edge where the
approximate theory represents the stagnation point by an infinity at the
edge. The present results, by contrast, rise to the stagnation ~ of
1.275 very close to the edge and then drop to zero at the edge itself
(see fig. 2(b)). The effect of this qualitative difference on the inte-
grated force on the surface is obviously small.

According to figure 2(a), application of a correction to the smaU-
disturbance results as out~ned in (b) above eliminates most of the

___ .. —.. .— -_ —.. _ --— —.



10 NACA TN 3723

numerical error relative to the present findings. The discrepancies that
do remain are, for the most part, within the limits of accuracy to which
one can read numerical results from the graphs of reference 1. As regards
the leading-edge flow, the corrected curve gives a true stagnation value
of 1.275 but places the stagnation point stiU on the edge. For almost
all purposes, therefore, there appears to be no need to go beyond the
corrected small-disturbance analysis. Only if the details of the flow in
the imediate V5.cinityof the leading edge are of importance is it neces-
sary to resort to more accurati work.

The results for incompressible flow have been included in figure 2(a)
for general interest. They illustrate the relatively great displacement
of the stagnation point (Cp = 1.O) that occurs in the incompressible case.

CONCLUDING REMARKS

To what extent the results found here”will apply to an actual airfoil
in a red. fluid is an open question. The only experimental data bearing
on the problem are those of Wood (ref. 13), who made interferometric
studies of the flow at high subsonic speeds over a thin wedge at an angle
of attack of the lower surface of 11.5°. Wood~s results for the lines of
constant Mach number (see, in particular, his figure 3(e) for & = 0.89J+)
show a distinct reseniblanceto the flow field of figure l(a). Wood remsrks ,/

on the basis of his results that the stagnation point is “very close to
the leading edge,” though precisely how close his mea&rements do not show.
At moderate distances above the leading edge, the sonic -linefound by Wood
looks reasonably like that of figure l(a) if regard is had for differences
in free-stream lkch number. As to conditions in the hmediate vicinity
of the edge, Wood takes his results to “indicate strongly that the sonic
line starts from the u~er surface,“ though “refraction of the light in
the large density gradient . . . precludes following the contours all the
way to the surface.” Because of the latter circumstance, the interfer-
ometer, in effect, views the field from essentially the scale of fig-
ure l(a) (or, at best, something a slight bit larger). In view of the
minute size of the leading-edge flow as calculated in the present work,
Wood1s inference must therefore be taken as tentatin. As factors that
might move the sonic line frcm the lower surface, Wood cites the viscosity ,
of the fluid and the nonzero thickness of the real leading edge. Viscos-
ity will undoubtedly be cd?sane influence, though the large negative
gradient of pressure near the leading edge would tend to minimize this
effect. (The pressure in the separated region will, of course, be ftied
by viscous phemmena, but these need not influence conditions on the lower
surface.) The thickness of the leading edge is likely to be of more
importance, since any reel ewe, though “shsrp” in the ordinary sense,
will have an enormous thickness when viewed to the scale of figure l(d).
It may well prove, however, that any changes from the theoretical pattern,
even from this latter source, are of only locsl effect and that the rela-
tively distant field will be correctly given by the theory. Certainly
there are many questions to be answered, and the remarks of this parsgraph

A
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are to be considered merely as miscellaneous thoughts on the subject. A
challenging field exists here for experimental resesrch.

II - WTAII.S (F ANALYSIS
,

An outline of the method of analysis has been given in part I of the
report. The material that follows is concerned with the mathematical
details. Jn the initial section the analytical basis is given for the
calculation of the mixed flow over the lower surface in the hodograph
plane. The main interest here is in the treatment of the free-stream
singularity. The second section is concerned with the numerical solution
of the hodograph problem. The procedures developed here, particularly as
regards the finite-difference equations in the superswic region snd near
the sonic line, may have application in other problems of mixed flow.
The third and final section deals briefly with the characteristics con-
struction used to find the purely supersonic flow over the separated region
on the upper surface.

ANAIXTICALBASIS FOR CALCULATION Cl?FLOW OVER LOWER SURFACE

Boundary-Value Problem in Hodograph Plane

.A representation of the flow
the physical plane has been given
spending picture in the hodograph
variables here are the dimension-
less speed w (i.e., the ordinary
speed V made dimensionless
through division by the critical

over the lower surface of the plate in
in part I (see sketch (a)). The corre-
plane is shown in sketch (b). The

speed– a+) and the-flow inclination “ F“...
e (measured relative to the free-
stream direction). Corresponding
points in sketches (a) and (b) are /4
noted by the same s~bols. - -

In the hodograph plane the
sonic speed appears as the circle
w = 1. The free stream appears
on this circle as the point O “
locatedat 8 = O. All of the
streamlines issue from this
point, which is therefore sin-
-. The lower surface of
the plate is represented by a
straight line passing through
the stagnation point C and
inclined at an angle of attack

‘=-/”’
Sketch (b)
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This line meets the sonic circle at
to the umstresm side of the leading and

trailing edges,-respectively. The leading-edge itself appesm as the
clockwise ckacteristic (i.e., epicycloid) through D; the trailing edge
as the counterclockwise characteristic through B. The limiting Mach
waves appear in the hodograph as the.two characteristicspassing through
the free-stresm point O. The point (E or A) at which each of these char-
acteristics intersects the image of the corresponding edge fixes the
extent of the edge that is of importance in determining the flow over the
lower surface. The stagnation streamline runs in the hodograph from the
free-stresm point O to the stagnation point C, where it branches. The
streamlines that lie above the stagnation streamline in the hodograph
plane pass above the plate in the physical plane. Those that lie below
this streamline pass below the plate.

To calculate the flow over the lower surface of the plate, a boundary-
value problem must be solved in the region OABCDEO. If the stresm func-
tion ??(w,e)is taken as the dependent variable, the differential equation
to be satisfied is the usual linesr equation (see, e.g., ref. 14, P. 147)

-3+1-~

w=??’+ w
7+1 1-*

??W+ %e = O
-1

(1)

1-L*
-1

1 --F
y+l 7+1

where differentiation is indicated by the subscript notation. This equa-
tion is elliptic for w <1 and hyperbolic for w >1. The characteristics
that exist for w >1 are given by

(2a)

or

(2b)

.

where *1 is the value of e at which the characteristicmeets the
sonic circle.

—. .— ..-
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~ boundsry conditions to be satisfied in the problem are as fol-
10WX:

1. The value of Y is constant - ssyo - on the boundary ABCDE.

2. The function Y has the proper singular behavior at the free-
stresm point O.

3. The streamline !?= Obranches at the stagnation point C.

In order to represent the free stream, the singularity at Omust have
the following properties (cf. ref. 15):

(a)

(b)

(c)

(d)

The function !? takes on aU values frm +mto -m at the
point o.

No singularities propagate along the limiting characteristics
EO andAO. (This follows from the fact that no singularities
exist in the boundary conditions at E and A.)

The limiting characteristics transform into the finite psrt of
the physicsl plsne.

The flow maps onto a single sheet in the physicsl plane.

Simple and useful expressions satisfying these requirements for the small-
disturbance equivalent of equation (1) (i.e., the TM.comi equation) have
been given by Guderley (refs. 1, 15, and 16) andl?rsnkl.(ref. 2). These
expressions are the sum of two parts: (1) a doublet-like singularity
antisymetric in 6 and (2) a vortex-like singulsri~ symmetric in 13.
Correspondingly simple expressions for the exact equation (1) have not
been given, though Frankl (ref. 2) has obtained an infinite series of
Chapl.yginsolutions that satisfies the given requirements. The present
work will utilize the known singularities for the Tricomi equation (which
predominate in sny event) plus certain correction terms sufY?icientto
account for a significant part of the difference between the apprcxdmate
and exact results (see following section).

In view of boundary condition 1, boundary condition 3 csnbe met by
requiring that

for any (and hence

‘&(o,e) = o (3)

all) f3 between -a snd n - a. To satisfy this condi-
tion in the present work we shaU write Y in the form -

Y=@+c@ (4)

— . . . .. .—.— ——. .-— —..— --- .-
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where @ and
and symmetric
The functions
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@ are funct~ons containing, respectively, the antis~etric
psrts of the free-stresm singubrity and C is a constant.
!@ and @ will be required to ‘satisfyindividually the

boundary condition lbut not the boundary condition 3. The ccmibinedfunc-
tion !? will then constitute a solution of the complete problem - that is,
will satisfy all the boundary conditions including 3 - provided C is
evaluated such that

c
Y..a(o,e)=-

Yws(o,e)

The task now is to solve the individual boundary-value

(5)

problems for
@and@. ~theend this will be doneby numerical (i.e., finite-
difference) means. First, however, certain analytical pre~es are
required, particularly with reference to the free-stresm singularity.

Transformation of Differential Eqution

To utilize the lumwn singularities for the ~comi equation, it is
necessary to put equation (1) into a form closer to that of Tricomi.
This canbe done by a trsmsformation of the type usedby Guderley in the
case of the equation for the Legendre potential (refs. 12 and 16):

V = q(w)

*’J--Y!
g(w) 1 (6)

~ressions for the functions q andg appearing here are fouudby sub-
stituting equations (6) into equation (1) and reqpiring that the resulting
partial differential equation for $ agree in its derivatives with the
‘ilicomiequation -

This procedure
~ endg:

speiificaXly, tit it have the form

*
~n - Twee + b(q)v = O (7)

leads to the following ordinary differential eqyations for

(8)

— . _.—
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/3’+$

.

.()1
Y-3+-—

#’+1 7+1

?’ ~ ~_@+
7+1

where thg primes denote differentiation of a function with
srgument~

for w~l

[

q(w) = ;

By integration of equaticm (8), q is found as

.

respect to its

.

.

.

@Y’2t=-1@%Y2

(9)

( )
1/2

+-1
tan-

1
7-1 W2-—
7+1

(lea)

1
2/s

(lob)

for w> 1. Here q has been taken equal to zero at w = 1 to satisfy
the req–tirementthat equation (7) change type at this point. (The s~-
larity between equations (lOb) and (2b) should be noted.) Frcm equa-
tion (9), g is found as

7+2 7+1
6(7-Z)

g(@=@f39 (2-iil’’(’-%@f)-’)
(1.1)

where the constant of integration has been chosen (arbitrarily)to make

g =lat w=l. Plots of q and g as functions of w for 7 = 1.405
are shown in figures 3 and 4, and tabular values are given in table I.
The function q is positive at supersonic speeds (w> 1) and negative

-- .———— —————.- . .
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at subsonic speeds

- has a finite value

NACA TN 3723

(w< l). It goes to negative infinity as w+ O aud

(q-) at~~ speed Wm = J(7 + 1)/(7 - lJ.

The function g goes to positive infinity as w+ O and to zero at

%2X*

The function b(q) in equation (7) is given implicitly by.the equation

.

()1
7-3+-—

g+l 7+1 gf

g Y
1

7-1* F-—
7+1

(X2)

where gt/g and gn/g are to be evaluated with the aid of equations (9)
and (8). A graph of b as a function of q is given in figure 5;
tabular values are included in table I. The value of b is always nega-
tive; it approaches negative infinity as q+ ~ ~d zero EM q+ -m.

For the stiseqwtwork it is also necessaryto bow b as a power series
in q about q = o. The I’eq- expansion is

b(q) =bo+b1q+b2@ +... (13)

.

where

b. = -0.9181

b= = -1.3164

c
8=ar-a D

1

I E
I

0
0

0
0

‘o 0’

c~ ‘~ ‘
8=-a ;B

sketch (c) ‘

When transformed
into the ~,0 plaue,
the hodograph boundaries
appear as shown in
sketch (c). The char-
acteristics of the dif-
ferential equation (7),
which define the bound- d
aries for q > 0, are
given .by (see eqs. (2b)
and (Mb) )

_— — —---- —- —.
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(14)

These are the ssme, of course, as for the Tricomi equation.

To carry out the solution for q > 0 we shall also require equa-
tion (7) in characteristic coordinates. These coordinates wi12 be denoted
here by r and z (correspondingto the right- and left-hand characteristics
relative to the direction of positive q). They are defined by the
equations

or equivalently

When transfoned into

e
2 @/~

=r--
3

e =z+:#

‘= [z‘r-r
these coordinates, equation (7) becomes

(15a)

(15b)

(16a)

(16b)

[ 1[6(r-Z)]2’s-WrZ ++ ($r-vl) +bW=O (17)

,

Free-Stresm Singularity

Method of treatment.- The finite-difference solution of problems
involving a strong singularity (i.e., an infinity or discontinuity in the
unknown or en infinity in its first derivatives) has been discussedby
various writers (see, e.g., ref. 17). The usual procedure in linear prob-
lems is to write the dependent vsriable as the sum of two parts, each of
which is individuaQy a solution of the differential equation. The first
part is a term of known analytical form containing the required singular-
ity. The second part, free of singularity, is to be determined in accord-
ance with the remaining, nonsingular boundary conditions. This part, being
regular, can be found by numerical means. This procedure, unfortunately,

.. .— .--—....— ——— -- ——— ——. —-
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cannot be followed in the present case, since suitable analytical expres-
sions for the singularity for the complete equation (7) are not lmown.
Instead the procedure here win be to utilize the known singularities for
the Tricomi equation plus certain analytical correction terms. These
terms will reduce the order of the singularity in the remaining unknown
to the point where it may safely be ignored in the numerical process.

The sonic singularities for the T&icomi eqwtion - that is, for the
equation

T(v)

have been discussed at length
Guderleyts notation, we shall

= Wqq - m~e= o (18)

by Gud.erleyin reference 16. Following
~ress these solutions in the form

= lqlnfl(L;n) (19)

where ~ is a new variable defined by

(20)

The fIXICtiOII fI is a solution of a hypergeometric equation whose coef-
ficients involve n as a parameter. Expressions for fI ~e listed fi
reference 16 b terms of hypergeometric functions. As shown in refer-
ence 16, the values of n required to represent a uniform free stream
are -5/2 for the antisymmetric singularity and -1 for the symmetric
singularity.

To utilize the solutions (19) in the present case, we begin by
rewriting equation (7) as

T(w) =- (b. + blq +

For reasons that will appear directly,
problem (for either @ or’@) is then

m

—

b2q2 + . . .)* (21)

the solution of the bouudary-value
taken in the form

(22)

———— ..- ——— . . .—. — . . . . .
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where A is any convenient constant. The fi that a~esx here are

Sill@W correction fUllCtiOIlS2 Of the fOI’111$i = h~gi(~) and x is

added to satisfy the nonsingular boundary conditions. In contrast to the
usual procedure outlined above, none of the terms in equation (22) are
individually solutions of the differential equation (21). To make clear
the reaso~~for the foregoing choice - aud at the same time derive eqm-
tions for ~ end X - we substitute equation (22) into eqyation (21) and
arrange the result according to the following scheme:

i

+ T(to)

+ T(?=)

+ T($=) = -

+ T($’s)

+ .0.

+ T($m)

1+**......*..... .0...0... . . . . . . . . . . . . .

(23)

The idea here is that we determine to, $=, etc., such that T($o) = -bo~,

tion functions must proceed like $0 = l?In-go, $= = IqIn*g=, etc. The

scheme of equation (21) follows accordingly. (Note in particular that for
i ~ 2 the previous correction functions must be included together with $
on the right-hand side of the equation.) It thus appears that the expres-
sion (22) will constitute a solut~on of the differentisl equation (21),
provided the general correction vi and the function X satisfy the fol-
lowing nonhomogeneous differential equations:

2Correction functions of this ~ have also been used by FrenKl in
reference 2.

. .. ...—. ___ _- ——— _ .-.. -—-— —. _.—
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T(;i) = - (biqi? + bi_2~i-2$o + bi-g~i-s~= + . . . + boti-z)

(24)
fori=O, l,. ... mand

T(x) +b% = - A[(bm+ZT~l + ~v~ +.. .)$

+ (bm-1fl-1 + bm~ +.. .)?0

+ (hP2qm-2 + ~- =qrn-1 +...)?=

+. . ● ✎ ✎ ● ✎ ● ✎ ✎ ✎ ✎ ✎ ● ✎ ● ✎

+ (b. + blq + . . . )?m-1

+ (b. + blq +.. .)tml (25)

It is ~pparent that the correction functions $i, like the original func-
tion $, are singular at the origin. The singularity, however, becomes ,
weaker (i.e., makes its first appearance in progressivel.yhigher-order
derivatives) as i increases. The function X is also singular ~t the
origin, the singularity here being one prder weaker than that in $m.

Equations (24) and (25) form the basis for the present work. As
will be seen, equation (24) can be solved analytically for as large a
value of i as will be required. Solution for srbitrary i would be
very difficult. (This is the reason for not taking m = ~ and thus
reducing X to a regular function.) Equation (25) will.be solved numeri-
cally, subject to appropriate boundary conditions, by ignoring the singu-
larity in X at the origin and applying the finite-difference techniques
ordinarily used for a regular function. If the singularity is sufficiently
weak, the resulting error in the over-all solution should be small. To
make a numerical solution possible at all, a minimum requirement is that
the right-hand side of equation (25) must be finite and single-valued at

the origin. Since V = lq~fl, it can be seen that for this requirement
to be satisfiedwe must choose m such that m+l+n> O or that
m > -(n + 1). For the antisynmetric singularity (n = -5/2) we shaU
therefore take m = 2. For the symmetric singularity (n = -1), m will.
be taken equal to 1. ~ the antisymmetric case the singularity that then
remains in X first appears in the derivative XGe (but not in X7
~~). In the symmetric case h ‘rit first appears in the third-order de va-

tives. Ignoring singularities of this order in the solution for X may
be ~ected to cause negligible error, especially in the vicinity of the
plate.

Solution for correction functions.- According to the foregoing,

‘expressions for the correction functions $i are needed for i=O, 1, 2.

.— .— —. .—.———— — ————
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These are found by solving equation (24), which can also be written

i-2

tiqn- diee = - biqi~ +
I bi-2-tlli-z-t$t (26)

t=o

To carry out the solution we introduce a function T that satisfies
the Tricomi equation

T m - llTee= 0 (27)

and has the property that

(~ressions for ~ will be given later.)s From equations (27) and (28)
we also have the relations

(29a)

and

TIE solution of equation (26) will nowbe assumed in the form

(30)

where pi
entiating
.

- qi are constants whose values are to be found. By differ-
this expression and making use of relations (29), one obtains

‘This approach was suggested by Gottfried Guderley, to whom the
authors are much indebted.

.. .-—. . . ..—-.. .—-— .— —-— —.———--- .——-.— --
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?inv = pi[(i-l)(i-2)7i-9T + 2(i-l)@-wq + qi-wqn] +

C4i[i(i-mp-%q + (2i+l)lw + l++wql (31a)

(31b)

Stistitution of ~ressions (31) and (3o) into equation (26) then gives,
in viewof equation (27),

qi(=+mli?+ Pi(i- l)(i-2)?li-97+ (2Pi +i@(i-l)@*Tq

For this equation tobe satisfied for all q we must have

qi(=+l) = -bi

i-2

Pi(i -l)(i-2)=-
1 bi-2-tPt
t=o

i-2 I

(al + mi)(i - N = - I hi-2-t%
t=o J

(32)

.

These are three equations for the tWO UnkIIOWIISpi - qij SO tkt ill
general a solution cannot be found. For i = 0, 1, 2, however, certain
of the equations either coincide or disappear, and a solution can be
obtained as follows:

.—— .. ...—. ..— .- — — —____ .-— .-
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.

For i=O

which have

For i=l

equations (32) reduce to

% = -b.

-@o = o

-2p. = o

the solution PO = O, ~ = -bo.

equations (32) become

3q== -bl

Pl=o=o

(2P. +Q*O=O

We thus have pl srbitrary - say O - and ql = -b~3.4

For i = 2 equations (32) become

5% ‘-bz

p= . 0 = -b@.

Since p. =Oand~=-bo,

p2 = (bo2/2) + (b2/5).

By using these results
correction functions as

these have the solution ~ = -b2/5 and

in equation (30), we thus obtain the reqtired

(33)

--

41t is to be expected that PI would be ar~itrary, since for i = 1
the first term of expression (27) reduces to P=V, and this term will, by
virtue of equation (24), disappear when substituted into the left-hand
side of equation (23), irrespective of the value of p=.

. _-___ —- —-.— .—— .— - -— ..—.— — - - ——
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33?it were required, a solution for & ~cofid be fo~
able value of p= # O. A solution for ~~ (and hi@er)
equation (27) is apparently impossible.

NACA TN 37’23

by taking a suit-
in the form of

.

go applyequations (33)it remains to write expressions for T
“

anav.
%

With the aid of we equffbionsof reference 16 (pp. %and 34-35)
it can eshowntha~,if ~= l~!fI(~;n) asgivenbyeqwtion (19), then
an expression for w that satisfies equations (2’7)and (28) is

(34)

where

(4n + 1)(4n-+ 7)

‘=(n+2) (n+3)(2n+l)(2n +3)

By differentiating equation (34) and hating recourse again to the equations
of reference 16, it can slso be shown that

(35)

where (sign q) or (sign e) me quantities with absolute value 1 and the
sign of q or e.

Final relations.- By using equations (19), (33), (34), ad (35) in
conjunction with equations (22) and (25), we can now write the final
relations to be used in solving the bo~-value problas for @ end ~s.

I?roblemfor $% lh this case the solution must contain the anti-
symmetric singularity, in which case n = -5/2 endm=2. Equation (22),
written for @, thus becomes, after substitution from equations (33),

. .——. —.— ...— .. . . —.—— —-.—..
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The differential equation for the unknown Xa is found by substituting
equations (33) into equation (25) and can be written

(37)

The fonmlas to
eqyations (19),

-a
v=

$a=

be used in computing $a, Va, and $;, as obtained from

(34), ad (35), =e

\

(38)

These quantities are all.antisymmetric with respect to 13,so that
computations need be carried through only for positive 13.

Problem for @: Here the solution contains the symmetric singular-
ity, in which case n = -1 andm = 1. The equation for @ is therefore

‘s=As[’s-(bo+w’~l+’f
(39)

and the differential equation for %s is

‘% {- q~e +bXs =-AS [b - (bo+b=q)]vs -b(bo+?q)f;} (40)

.- — .. —. -— ..— -. .- ..— — — —._ -. ——
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are

4 )1ql’2(signe)f 0: 1 (41)

These quantities are both symnetric with respect to (9.

Formulas for
given by Guderley
the values of n
form analogous to
a new variable s

me fI(~;n) -t appe= ti
in reference 16 in terms of
required here, however, t-
that given by Fraulslfor n
is introduced according to

equations (38) end (41) are
hypergeometric series. For
results can be put in closed
= -5/2 in reference 2. If
the definition

“ti=K
the pertinent formulas sre

.

1

[

1 1

‘I(C; ‘1)” = : p2

1
- q= (1 - s)= + (1 + s)=

2-—

[L )
f@)=-;182-lls 3+s 1- s,*+& S)(1+ s+]

(42)

(43)

.-— — ——._—. —— —. ..—
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Equations for Transformation to Physicsl Plane

After the boundary-value problems for ~ and @ are solved, Y is
found from equations (6) snd (4), and the solution is transformed to the
physical plane. If x and y form a right-hand coordinate system with
x in the free-stream direction, the transformation equations csn be put
in the form (cf. ref. 14, pp. 146-147)

dx=

.1

x@w + Xede -
(44)

@ = Y#w + yede

where

Pt

[

l-e Y’e
xw =-— 8in e ‘i!W+

1]
cos e ~

pwax y-l~l--
y+l

f%
Xe = VW

[ 1
wcos(3Yw-sine9?e

Yw=&
[

l-w=
Cos OY.-

1
y-1#-—
7+1

ye .+*

[ 1wsin6Yw+cot3 (lYe

.

Pt

(

7-1*

)

-+1
—= 1 -—
P 7+1

(45)

(46)

In the present work alJ.distsnces will be made dimensionless in terms
of the airfoil chord, which can be written

XB - XD
c =—

COB a

. . .. .—. . ._._ .— ——. .. . _ .— __ _ __ —-.
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where xD SJIIdXB are the x coordinates of the leading and trailing
edges (measured.relative to any convenient origin). By applying equa-
tions (44) through (46) along the Mne DCB, for which W = O (see
sketch (b)), one can write

It is
to B
d(*)

i

B

xB
cos a.xD. x~w = —
%1

where

,

(48)

(49)

understood frcm the limits that the integration is taken fran D
along the image of the plate. The minus sign in the differential
is to be used from D to C snd the plus sign from C to B. Combi-

nation of equations (47) and (48) then gives

c 11=—
as

from which we can write

(50)

(51)

Equations (51), (49), - (45) are the basis for We n~eric~ tr~sf or-
mation from the hodograph plane to the physical plane.

To transform the characteristic lines in the supersonic region, it
is convenient to rewrite the transformation equations in the coordinates
r and z. !l!hiscan be done on the basis of equations (15) and (8). The
results are

— — —— .— ——.—. . - -—— -—- .—
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.

J

where

Yr = ~: (p sin e + Cos e)Yr I
‘1 = -&--(~sine- CO8 e)Yz

J

and

1/2

$

()

F-l=
7-1*

l-—
9’+1

NUMERICAL SOLUTION FOR FLOW OVER

Genersl Scheme

LOWER SURFAC!FI

(52)

(53)

The numerical solution of the boundary-value problems for & and @
will be based on equations (36), (37) and (39), (40). To -lain the
general scheme, it is convenient to introduce the linear differential
operator Lb(F) defined equivalently by

. ...- .. —..——-—-.— ——. —.. —. .-—
,.
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(
(548)

In this notation the differential eqmtions (7) and (17) become

It is also convenient
and (39) in the form

Lb(w) = O

for present purposes

*= AM+X

(55)

to write we solutions (36)

(56)

where M is a
in the earlier
equation (55),
in the form

shorthand notation for the quantity appearing in brackets
representations. By substituting this expression into
we csn then write the differential equations (37) and (40)

I#X) =-ALa(M) (57)

where Lb(M) is identical to the quantity in braces on the right-hand
side of the earlier eqyations.

To carry out a solution for the unlmown X, we begin in the usual
fashionby replacing the differential expression on the left-hand side
of equation (57) by a corresponding difference expression. This is done
as usual by covering the region of solution with a suitable mesh and
approximating the differential operator L~(F) by an appropriate &Lfference
operator at each mesh point. ~s difference operator, denotedby LA(F),
will appear in the form

LA(F) = LA(Fo> FJ-> . . . , Fn)

where the Fj(j=O)l,...~ n) denote the values of F at the point
in question and at n adjacent points. In this mamner the differential
equation (57) is replaced at each mesh point by a difference eqwtion of
the t~e

-.—.
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LA(X) = -4(M) (%)

.

So far the procedure is conventional. At this point one could pro-
ceed, also in conventional fashion, to solve the difference equation (58)
for X. The required values of X on the boundary would follow directly
from equation (56) and the known condition that $ = O on the boundary.
Following the determination of X at all mesh points, the corresponding
values of w would thenbe calculated, sgain by means of equation (56).

Considerable simplification over the foregoing method canbe obtained,
however, by using amethod due to Woods (ref. 17). According to this
method, instead of solving for X, one uses eqyation (56) immediately to
replace X: for all mesh points in equation (58) by the equivalent

v
1?

- AM~. (The special case of equations involving the origin, at which

s = m, will be treated later.) In this manner one obtsins a system of
difference equations of the form

LA(V) = -A[~(M) - LA(M)] (59)

This system canbe solved directly for w. This method, though completely
equivalent mathematically to that outlined in the preceding paragraph, has
a great advantage for the present work. This stems from the fact that the
right-hand side .ofequation (59), which is proportional to the difference
between La and LA both operating on M, tends to zero as the distance
from the origin increases. At some distance (depending upon the value of
A, the size of the mesh interval, and the accuracy desired in the work)
the right-hand side will, in fact, became negligible. Beyond this dis-
tance eqpation (59) reduces for all practical purposes to

LA(W) = O (60)

(which is the ssme as would have been obtained if the finite-difference
approximation had been introduced into eqyation (55)). This mesns that
the values of Q(M) and M need be calculated at only a small percentage
of the mesh points, instead of at all.points as would be the case if the
method based on eqyation (58) were used. Furthermore, the advantages to
the computer of working with the familiar vsriable ~, with boundary con-
ditions directly in this variable, are considerable.

~ foregoing procedure must be modified when one of the Xj in
the difference equation (58) - say Xk - is located at the origin. This
situation wiU prevail in the difference equations at the origin itseld’
and at points adjacent thereto. In these eqpations Xk cannot be replaced
by $

5
- AMk stnce Mk is infinite. It must therefore remain in the

equat on, although the other Xj can be replaced as before. Even in such
cases, however, the genersl procedure csm be formally retained if we look

..-— —... . ...— -—— —— ——. — —
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upon Xk as a fictitious vshe Of ~ - say tk - and take Mk aS arbi-
trarily zero. If this convention is used in the expressions to be given
below for LA(F), equation (59) will automatically provide the correct
difference equations at the origin and adjacent points. The value of Vk
that is computed, however, w have no red s~ic~ce.

Details of Finite-Difference Eqpations

To apply equation (59), it is necessary to obtain expressions for
the difference operator LA(F). TM.s will be done differently in three
different regions of the hodograph, as illustrated schematically in
sketch (d). (Here only positive f3 will be discussed. The procedures

Sketch (d)

for negative f3 will be obvious.) For purposes of the present discussion
ql is used to denote some convenient negative multiple of A, where A
is the interval of the finite-differencemesh in t~ T}e variables; 1111
is defined according to the relation qll = VI +A. With this notation,

the three regions in the hodograph and the procedures used in each are
briefly as follows (details will be given later):

ql<qso: In this region the field is covered with a square mesh

of basic interval A in the q and f3 directions. Adjacent to the upper
boundary the interval is adjusted (made greater than A) so that the
terminal mesh points Me on the boundary. Throughout the region the dif-
ference operator is foundby approxhation to the differential operator
in the form given byeq~tion (~a).

q>o: In this region the mesh is formedhy lines of constant
r and Z as shown in the sketch (see also eqs. (15)). It is convenient
here to include
tance A above

a line of constant r beginning on the sonic line a dis-
the uppermost line in the subsonic field. At sll points

..——. -- . — -. —.— ——— --- — .—..—.——— . -———— . -- - -—
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(except those next to the sonic line) the difference operator is obtained
by approximating the clifferential operator in the form given by
equation (54b).5

.

q<q~:
hi

Here a reversion is made frcm q to the original vari-
able w. s is done to avoid difficulties arising from the fact that q
extends to -. A rectangukr mesh is employed with basic interval A in
the e direction and A’ in the w direction. At the right-hand side
of the region the intervals in w are adjusted so that vertical mesh
lines fall at locaticms WI and W1l corresponding to VI and q=. At

all points the finite-Uf’ference equations are based not on eq@ia (59)
but on the differential eqmtion (1) for Y. For this to be permissible,
VI must be taken far enough to the left that eqpation (59), if used,
would have reduced ccm~tationall.y to the homogeneous egpation (60).

With the procedures just outlined, the mesh points fall into eight
categories, each of which requires a &ferent treatment.
are listed as follows (a typical point in each category is
corresponding letter in sketch (d)):

a. Subsonic points in q,e coordinates
b. Regular supersonic points

Supersonic points next to corner characteristic
;: Supersonic points next to sonic line
e. Points on sonic line
f. Points near intersection of sonic line and corner

Regular subsonic points in w,e coordinates
:: Points next to st-tion point

These categories
indicatedby a

characteristic

Inmost categories the finite-difference approximation willbe obtained
by some variation of the usual series-eqansion procedure. In this proce-
dure the function F at each of a number of mesh points adjacent to the
given point is ~auded in terms of a truncated T@orls series about the
given point. These series can be regarded as simultaneous equations for
the derivatives of F at the given point and solved accordingly. Follow-
ing this approach, we obtain expressions for the derivatives in terms of
the local dimensions of the mesh and the values of F at the points

%nthe earlier work of references 3 smdk, attempts to devise a -
numerical.procedure in the supersonic region, using either rectangul~ or
characteristic coordinates, were not successful. In these reports, which
employed the Tricomi approximation, the difficulty was overccme by eMni-
nating this region and substituting an integral relation as a boundsry
condition on the sonic line. For the present work it has been found pos-
sible to set up a successful numerical procedure by hating proper regard
(which was not done previously) for the region of dependence of each point
in the characteristicsmesh. This was essential here, since an integrsl
relation like that used before is not available for the exact equation.
Even if it were, however, the present method would probablybe preferred
from the computational point of view.

.- —.- .—. —.—...—----—---- .—. —. - .—— — —- ——- - --
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considered. By substituting these results into the pertinent differential
relations, the required finite-&lfference a~roximations are obtained. .

The number of terms retained in the T&lor’s series in any given case, as
well as the number of adjacent points utilized, will depend upon the order
of the derivatives to be approximated, the local arrangement of the mesh,
and the degree of accuracy desired. The policy here wSU be to use the
simplest expressions possible consistent with the analytical and geometri-
cal situation at the point in qyestion. The requisite accuracy will then
be obtained by reduction of the mesh interval to whatever degree appears
needed in various parts of the field. The details of the derivation will
be given only when the procedure differs from that ordinarily encountered.
(For detailed ~les of the OrUnary kind, see ref. 3.)

Subsonic points in m,0 coor~tes. - The situation at points of
this kind is shown in sketch (e). For application - to the upper and

I lower boundaries, irregular mesh intervals are

.1

provided in the vertical direction. These are of
length h and k relative to the basic interval

hA fL By straightforward application of the series-
~ansion procedure to the approximation of the
differential operator (54a), one obtains for the

‘~’ ‘erence
IkA

3

Sketch (e)

L@’) = ~

operator at ‘O --

[

F2+F4

— - (l-%N+b@oM?1+KF2
2 “lo hk(h+k)

(61)

where the subscripts O, 1, 2, etc., denote vdlues of F at the correspond-
ing points in the sketch. (The quantity b. that appears in this and
subsequent finite-difference ~ressions should not be confused with the
b. that was introduced previously in the treatment of the free-stream
singularity; cf. eqs. (~) through (40).) men the operator (61) is
app~ed to ~ at a point O nex% to the upper or lower boundary, $1 or $=
is set equal to zero as required by the boundary conditions. For a point
O on the line q = TTT~ *4 iS repl~edby ?ZA/g4 to COnfOrIUtith the
variables used in the region q < qm (see above).

supersonic points.- The arrangement

‘a

ofpo%ts in this case is shownin sketch (f).
Here the adjacent points 1, 2, 3 are chosen to

3 Me in the region of dependence of the point O,
which for the present flow is the curvilinear
quadrant opening toward the corner characteristic

o and the sonic line.6 Through application of

Sketch (f) the series-~ansion procedure in the r,l

61iote that the increment in r or z from one mesh line to the next
is the same as A, the mesh interval on the sonic line (cf. eqs. (15)).

.- —... — —.
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coordinates, the following difference operator is found by
to the differential operator (5hb):

[6(ro- Zo)]2’s
LA(F) =

[
-(F2-Fl-Fa+Fo) +6(roAZo) (F~-

A2

35

approximation

1
Fz) +b@o

(62)

Supersonic points next to corner characteristic.- The situation at
a point of this kind is shown in sketch (g). It is known frcm Guderley?s
solution for flow over a convex corner (ref. 16)
that ~ wi~ have a singularity in the second
derivatives at the corner. This means that the
series-expansionprocedure is not p-ermissible
in this case and some other approach must be 1
devised. A

o
For values of A small enough to obtain

acceptable results in the numerical solution, Sketch (g)

equation (59) will ordinarily have reduced to equation (6o) by the time
the boundary is reached. We need concern ourselves, therefore, only with
an expression for ~ as applied to ~. According to Guderleyts singular
solution, in the vicinity of the corner characteristic the variation of $
along a line of constant z (such as 03 or I-2)is of the form

4/s
~-(r~-r) (63)

where ~E is the value of r at the corner. Although Guderley’s solu-
tion is for the Tricomi equation, the same result nqybe expected for the
exact equation (7). An interpolating function that satisfies condition (63)
and w therefore be used as an approximation to w in the viciniw of the
point O is

* ‘(%i9%
Differentiation of this relation and
gives for the difference operator at

*1-$0
+—

A
(1- 20)1

substitution into ~ression (54b)
the point O

[6(ro - Zo)]2’s 4
h(v) = L~(v=- *0)+

A2
A [(l-~ $o-v=]} +bo*o

6(ro - Zo)

(64)
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Supersonic points next to sonic line.-
A complication arises h this case (see

o

Sketch (h)

sket& (h)) frcm the fact that the ~riva-
tives of v in the r,l coordinates are
singular on the sonic Mne (cf. eq. (17)).
As a consequence, a series ~ion in
the r,z coordinates, like that employed
at regular supersonic points, cannot be
used here. This difficulty can be over-
come by using a expansion in q,e coor-
dinates, where the derivatives are regular,
and approximating the &ifferential operator
in the f- (’j4a).

To carry out the approximation, the
truncated Tayloris series for the func-
tion F iu the vicinity of the point O
is taken in the form

(q- %J2
F = F. + (q- qo)Fq + (f3- eo)Feo + z

o %0 +

(e- eo)2Fee + (TI- TIo)s
(TI- TIo) (e- eo)Fqeo + z

o 6 ‘wlo
(65)

In this connection we note that, for mesh points in the ticinity of O,

(q- qo) is of arder A2/9 while (e - eo) is of order A (see eqs. (16)).
Thismeans that the cubic term in (q- qo) is of the ssme order in A as
the squared term in (f3- Elo)end must be rettied in the series.7 By
a~lication of the series (65)successively at the points 1 through 7, a
set of simultsmeous equations is obtained that can be solved for F and

llno

Fee. ●
Substitution of the resulting expressions into the differential

operator (~a) gives findly for the difference operator at the point O

[
%(F) = 1 X(F1+F4) + U(F9 +F5) + 2TFe

(3A/4)4’= - (.%+3)FO+F,) -

(66)

Zrhis arises from the fact that , although the expansion is being
carried out in the q,e variables, & mesh points are still.arranged on
lines of constsnt r ‘&d z. -

—. ——
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where

37

-A=
22’s(2-22’S) - 32’S(2- 32’S)

cr=-
2- 32’=

&/9(22/3- 1)(3:/9 -22/3)

2- 22’=
T
‘32/S(32/S - ~)(3als - 2219)

When the point O is close to the corner - as at the point d? “in
sketch (d) - a further complication arises since the points 5, 6, aud 7
of sketch (h) sre no longer available. As will be seen later, however,
analytical knowledge of the-nature of ~ where the sonic line approaches
the corner characteristic canbe used to obtain expressions for $n and ~e

at point 2. (Here only V is of interest, since at point d’ eq&-
tion (59) will have reduced again to equation (60).) By differentiation
of the series (65) tith respect to q end 13 and application of the result-
ing expressions at 2, simultaneous eqyations csn againbe obtained that
can be solved for $

Wln
~ Veeo. In this wqy the following formula is

obtained for the neces&m?y difference operator when point O is located
at d?:

(67)

. ._ ._ .. . — ~ . — -——- ——-— — —- - -- —.- . . ——
.



38

where now

2/9

A=2
+2US-2

@is- 1

22/s - z
.r=—

LA(F) =

Sketch (i)

NACA TN 3723

Points on sonic line.- The
srrsmgement at a point of this type
is sh6wn in sketch (i). The Taylor’s
series for F as an =~ansion about
point O is again taken in the form of
equation (65), where now q. = O.
By applying this series at points 1
ttiough 6 and solving the restiting
egpations for F

Vlo’
one can write the

~erence operator, by approximation
to equation (~a), as

.

1

[
t(t2 - 1)F2 - 2t(t2 - 4)F1 - ~ (F9+F8) +

A2t(t+ l)(t+ 2)

3(F4+F5) -
(
:+7t -t=’)1F. + b~o

where t is related to A by

2/9

t
()

~-lkl
‘2

(68)

(69)

Points near intersection of sonic line and corner characteristic.-
At the two points nesr the intersection of the sonic line and corner
characteristic (points f1 and f2 in sketches (d) and (j)) the difference

— -... —-—..
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operators (68) and (66)
are not present. These

cannot be used since the necessary adjacent points
two points caube eliminated from the problem,

however,-by use of an interpolating function in the region in qpestiofi.
An appropriate function is provided here by Guderley’s singular solution
for flow over a convex corner (ref. 16). Though determined for the Tricomi
equation, this solution should provide a good approximation to the corre-
sponding solution for the exact equation for small values of q. The
details are as folJmws:

According to Guderley~s solution, the variation of V
of point D of sketch (j) can be represented by

v =Blq12f~(c;2)

where B is a constant and { is now definedby

~ = 9(% - 6)2

kq=

The function fII) given originallyby Guderley in terms of
series, can be represented in closed form by

in the vicinity

(70)

(71)

hypergeometric

[( )f~(c;a) = 1s2- 1[2’s + + s 1- s)~s -
(+ - ‘)l+J’SI’72)

where nuw

s_‘*=K1 (73)

To determinethe constant B, the func-
tion (70) is made to pass through the value

D

of ~ at the mesh point 1 of sketch (j).
We thus obtain finally for the interpolat-

e,4

ing function in the region in question

$=
4/3 1~~fII(E;2)

I*. (74)
31’g(~ -e) sketch(j)

.- . ..- .. ..—--c -—— —.. . . — —. —--— _.—
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This function is used
wherever these values
boring points. After
necessary expressions
equation (67).

I

4=

hA

4
8A’ g fA’

2

I
kA

3

Sketch (k)

NACA TN 3723
.

to e13minate the values of $ for points fl and f2
Bppt3ar in the finite-difference eqyations for neigh-
Mfferentiation, equation (74)alsoprovidesthe
forthe derivativesw

V2 - we2 requiredin

Regular subsonic points in W,e coordinates.-
A typical point, g, of this category is shown in
sketch (k). Here provision must be made for an
irregular mesh interval in any direction from O as
indicated in the sketch by the constents e, f, h,
and k. AS preciously a@ained, the difference
equation is obtdned in this case by a~roximation
b- equation (1) rather
result, as obtained by
dure, can be written

thsn to equation (59). The
series-aqx3nsionproce-

[

2- f2)P+ Q
- l?=+- Y!4+

Q (k?Yl+h%) - ‘+ ~:(f+ f]
hkl
—Yo=o

f(e+ f) e(e+ f) hk(h + k)

(75)

where

1 Y-3 2-—

P At y+l ‘0=—
2W01 7-1 2

-—WO
7+1

()Al 21 1- W02
f3. ——–, –-, —

For application at points

equation (75) is replaced
the region q > TI1.

7-1wo21-— W02
“7+1

on the line q= ql (see

by g292 as required by

sketch (d)), !l’2in

the variables used in .

Points next to stsgnation point.- The use of equation (75) at points
n- to the stagnation point - as, for example, at point h in sketch (d) -
is not Practical. This is due to the fact that the final values of Y are
obtaine~ by taking the difference between two quantities which, according

..———. .—. ———. —- -- . .—— — -- ..— —.————- --—



.

.

NACA TN 3723

to the boundsry conditions at the stagnation point, are
very nearly equal in this vicinity (see eqs. (3)
through (5)). This difficulty can be overcome as follows:

The situation in the region adjacent to the stag-
nation point is shown in sketch (Z). For small values of
w, a solution of eqwtion (1) that satisfies the boundary
condition that Y!= O on the surface of the plate (where
!?.sgain represents either @ or p) is givenby the
series

Y(w,e) =Dlwsin(O+a) +~w%in[2(e+a)] +

{

D= sin(e+a)
D~@ sin[3(G+a)]-—

DS 2(7+1) 1+O(W4) (76)

41

c

I

h

2

: 3

-A’ .d.,

c

Sketch (2)

Here a is the angle of attack and Dl, D2, andD9 are constants. By
writing equation (76) for any three points 1“,2, 3 on the vertical line
w= 241 and neglecting terms of O(W), we obtain three simultaneous
equations for Dl, D2, and D9. These equations canbe solved to obtain

and
can

Dl ‘D1(Wy2,9k) (77)

similarly for D2 and Ds. With these rebtions and equation (76) we
then ~ress Y at any point h on the line w =A1 in the form

These expressions are used to replace ‘$’4in the difference equation (75)
when that equation is written for mesh points on the line w = Z21’. In
this msnner points next to the stagnation point are eliminated from
-licit consideration in the finite-difference scheme. For best accuracy
the points 1, 2, 3 should be placed at approximately equal intervals
between the upper and lower boundaries. Zf this is done, no difficulty
is found in obtaining satisfactory results without a reduction in mesh
size in the vicinity of the stagnation point.

Distribution of mesh points.- The mesh used for an actual calculation
is not uniform as in sketch (d) but has a different spacing in different
parts of
solution
involves

the field. The distribution of mesh interval for the present
(a = 130) is shown in figure 6. ~s paI’tiC@.Srdistribution
a total of-880 finite-difference equations. The S- distribution

.—— ...+ ..— .. --— --- —— — —- . .—— .— - .._— —
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was used for both ~ end F. As in references 3 and 4, the transition
between the various parts of the graded mesh was accomplished by the use
of overlapping fields in essentidd.y the manner described in reference 18.

.

Solution of Finite-Difference Equtions

The solution of the finite-difference equations was obtained by an
iterative process involving both relaxation techniques and step-by-step
procedures. lh the first stsge of each iteration, the values of $ for
the columu of mesh points immediately to the right of the sonic line (as
obtained from an initial guess or frcm the previous iteration) sre con-
sidered fixed. on the basis of these vd.ues, a bo~-v~ue problem
is then solved for the points in the subsonic field and on the sonic line.
This is done by the use of stsndard relaxation techniques (see, e.g.,
refs. 19, 20, and 21). In the second stage of the iteration the values
of V obtained on the sonic tie as a result of the first stsge are used
as the initial values for an initial-value problem in the supersonic field.
This problan is solved in simple step-by-step fashion proceeu along
the characteristics runuing from the sonic Mne to the limiting character-
istic. This is done first for the characteristic adjacent to the corner
and then for succeeding characteristics in the interior of the flow. By
means of this procedure one obtains a new set of values for ~ at the
points immediately to the right of the sonic line. Those values are now
considered fixed egain, and the entire process is repeated. This con-
tinues until a consistent solution is obtained for the complete set of
finite-difference equations.

The numerical work for the present solution was perfomned entirely
on a desk calculator. In the initial stages of the iteration process the
relaxation solution of the subsonic field was rsrely carried to completion
at my given stage. Over- and under-relaxation =re, ti fact, found use-
ful to counteract the changes fed backby the mibsequent work in the super-
sonic region. Within the subsonic field, block relaxation was used exten-
si”%ely. Such devices were, in fact, essential to the solution of the
problem in a practicable length of time.

The results of the calculations are shown in figures 7 to 9 as contour
maps of Y in W,e coordinates. Numerical values are also given in
table II at the end of the report. For the reasons ex@ained in part 1,
the calculations were made for a value of y of 1.405. The results for
@ in figure 7and table II correspondti Aa =100; the results for @
in figure 8 and table II to As = 1,000. These ValUS, wIxLtifix the
strength of the singularities,were *osen to give a convenient level for
the dependent variable throughout most of the field and to provide an
absolute value of apprmimately 1 for the constant C in equation (4).
For both solutions the work was done to integer values of ~ inmost of
the field, and the residuals in the relaxation work were eliminated to
within M (with due care that residuals in any given area were not pre-
dominately of the same sign). Near the boundaries, where v is small.,

.
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the work was donewith valuesof ~ to two decimalplaces,end the
residualswere eliminatedto withiniO.@. The final solutionfor Y,
given in figure 9
c = -1.007. !131iS

Which iS obtained

and table II, was calculated from equation (4) with-
figure was arrived at from the relation

c
D=a=-—
D=s

h substitutiru?eauation (76) into eauation (5). !l?he
values of D1a and DIS were computed from an equation of the form (77),
as obtained in the treatment of the mesh points next to the stagnation
point.

Transformation to Physical Plane

The transformation from the hodograph plane to the
accomplished by integration of equations (51) or (52).
integrations sxe chiefly along ties of constant w, 13,
tions simplify considerably in a~lication. The actual

physical plane is
Since the necessary
r, or 2, the eqm-
integration was

carried &t in the present work by mechanical means on the basis of plots
of the appropriate integrand. The values of the derivatives of Y that
appear in the various integrands were found by numerical differentiation
of the values listed in table II. A detailed eqlsnation of the procedure
as applied to a similsr problem has been given in reference 3, and little
more need be said here. It should be noted, however, that when the inte-
gration of eqpations (52) is performed &long a line of constant r or z,
the ~repsion to be integrated reduces to the form f(w,e)dy. lh this
case, therefore, no numerical differentiation of !? is required, which
is advantageous with regard to the accuracy of the final result.

With the distribution of w known on the luwer surface of the plate,
the corresponding pressures can be calculated from the usual isentropic
relations. ~s follows from t- fact that the flow on the lower surface
is irrotational (see Description of Flow Field).

CHARACTERISTICS CONSTRUCTION (3?FLUW .
OVER REGION @’ SEPARATICIN ,

As explained in part 1, the calculation of the region of separation
on the upper surface was accomplished on an electronic computer by means
of a numerical method of characteristics. The nkthod employed was based
on the original l&amdtl—Busemsnnprocedure for two-dimensional irrotational
flow (see, e.g., ref. 8). For the results shown in figure 1 the increment
in stream angle between successive points in the characteristicsnet waa
taken as 10 throughout most of the field. In a small region adjacent to

.. . .—. —..—.
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the leadlng edge this increment was reduced to 0.2°. A check calculation
using an increment of 2° outside the latter region gave results negligibly
different from those obtained with 1°. With the 1° increment, the nuniber
of calculated points in the region of dependence of the separated stream-
line was apprmimatel.y 6600. TO obtain the required initial data on the
limiting wave (i.e., x/c and y/c as functions of r) it was necessary to
interpolate between the values obtained from the mesh points used in the
transonic calculation (see fig. 6). This was done graphically over most
of the range. Near the leading edge, however, the interpolation was done
micall-yon~ basis of an titirpolat~fuction compatible with
the nature of the singularity in the vicini~ of the corner characteristic.
The values of the initial data are listed in table III for anyone who may
wish to calculate the flow over an airfoil with another type of u~er
surface.

Ames Aeronautical Laboratory
National Adtisory Committee for Aeronautics -

Moffett Field, CsUf., MSY7, 1956
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a*

A

b

%2

%>%)%

e,f,h,k

F

critical speed
of sound ~e

APF5ENDIX

NOTATION

Primary Symbols

(i.e. speed at which speed of flow and speed
eqyal.~

constant deterdninn strmgth of singularity

function of q in differential equation for ~ (see eqs. (7)
and (12))

constants in series expansion for b (see eq. (13))

chord of plate

constsnt in superposition equation (se& eqs. (4) and (~))

P- PaJ
pressure coefficient,~

constants h series solution for !? in victity of stagna-
tion point (see eqs. (76) and (77))

length of irregular mesh intervals relative to that of basic
interval

functions ap ear5ng in singular solutions of Tricomi eqpation
(see eqs. ?19) ad (70))

general symbol
~, M, or%)

function of w
and (U))

for

in

variable in linear operator (may represent

transformation tiom yto ~ (see eqs. (6)

undefined functions of ~

index of summation (see eq. (22))

integral definedby e~tion (49)

differential operator (see eq. (54))

~ference operator approximating Lb( )

.- ..— — —- —-— ——— . —-—
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At

uwdmum value of index i

quantity introduced h equation (56) as
for quantities appear3ng in egyations

exponent of Iql in singular solutions
(see eqs. (19) and (70))

static pressure

total pressure

MACA TM 3723

shorthand notation
(36)md(3g)

of Tricomi egpation

constantsin solutionof equationfor $i (see eq. (30))

dynamic pressure

characteristic coordinates (see eqs. (15) and (16))

any length in flow field; also function of q and e defined
byegyation (42)

quantities with absolute value 1 and sign of q or e

ind~of summation (see eq. (26))

~icomi operator (see eq. (18))

speed of flow made dimensionless through division by critical
speed

Cartesian coordinates (x in direction of free stream, y
vertical, originatleading edge of plate)

distance along platemeasuredaft from leading edge

angle of attack

functionof w (see eq. (53))

ratio of specific heats (1.405 in numerical work)

dimensionless distance in free stream between given stream-
line and stagnation streatie

basic mesh interval in q and (3

basic mesh interval in w
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P

Pt

x

Y

function of q and e defined by eqyation (20)

function of w in transformation from Y to * (see eq. (10))

inclination of flow measured counterclockwisefrom f&ee-
stream direction

density of fluid

total dmsity of fluid

tiction appesring h solution for ~ (see eq. (22))

transformed stream function (see eq. (6))

solution representing free-stream singd.arity for Tricomi
equation (see eq. (19))

singular correction functions (see eq. (22))

function appearing in solution for $i (see eqs. (27),(28),
and (30))

stream function

Subscripts

w conditions in free stream

s conditions on separated streamline

nlax values corresponding to maximum speed (i.e., to speed

attained by expansion to a vacuum)

1,II values of q andw at change from q to w coordinate in
finite-differencemesh

o,%,a,etc. value at prescribed mesh point

superscripts

a quantities pertaining to solution with antisymmetric
singularity

s quantities perts.+m~ngto solution with symmetric singularity

( )’, ( )“ ftist and second.derivatives of function with respect to its
argument

.
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TA1312?III.- @j @, AND Y AS FUNCTIONS (Ill’W~ e (Aa = 100, As = 1000,
1.405)- Continued

,.

—

e
m
1.20
1.00
.80
.60
.40
.20

0

.425

.375

.W
=75
=5
.175

:%

-:%
-.m
--a
-.ln

2.8s
2.75
@5

X
2.35
2.25
2.15
2.05
1.g5
1.85
1.75
1.65

W
1.35
1.=
1.15
1.05

.9

.85

.75

.65

:i?
.40
.35
.30
.=
.20
J5
.10

-::
-.I.O
-W

.375

:E
.=5
.175
.W

-:%
*

P
iR&

.

~:;

f%:%
1o3.42

5?8
w
w

1,182

$%
3,759
7,=9

21,717
+o,ng
-5,5U

-123

.W79
1.215
$?.847
4.8*.
j’.ce6
9.433
12.1o
14.93
18.03

E:E
=.67

$
.52

47::
54.86
$.%

9A
no.%
X37.3
lJL;

%
a

%
1,050
1,433
2,q8
3#3u

$g

a

J@
~

9%
1,307
1,895
3,017
-l,m
a

&.
~~
=9.9.
186.15
UL.87

447

%
m

1,CC24

~8~

g.

’853
m

.-
1.183
2.765
4.6

T6.78

Z%
14.

.3
2.55
24.B
2%.19

~:

$.g

70:%
84.02

I.oo.a?
m.?
V3.7

Z::
339

R
m
n9

1,%
1,667

:%
742
161

?$
E

830
1,094
1,520

-.x

Y v
2.45 1.*
2.11
Au.
-l.=
-4.96
~.87
.IL35
9.255

128

ix

$

1,867
4,326
L6,221
!4,993
.7*5Z
-2,775

A
2.70
2.64

EC
2.30
2.20
2.1o
2.00
1.go
1.8o
1.70
1.60
1.50
1.40
1.30
1.20
1.1o
1.00
.9J
.80
.m

E
.35
.30
J35
.20
.15
.I.o
-.I.O

:%!
.22!
.lT
.=

2.75
2.65

kg
2.35
2.s
2.15
2.05
1.g5
1.85
1.75
1.65

kz
1.35
1.=
l.=
l.a
.95
.85
.75
.65
.55
.6
.35
.30
.25
.20
●W

&
2hC8
4.077

::%
3.0.26
12.64
=.25
18.18
ZU.41
24.95
26.%
33.-E
g:g

53.81
63.n
%.57

?%%!
144.5
188.o
w.8

357

;$

k;
1,2C%
1,~
-3C6

400
495

z
l,llg

.0436
.889

2.Ogl
3.538
5i16g

8:87
logo
13.12
l%fa
18.34
21.32
2k.P

?ic

i$J
.8

:01
64.91
7881.

E23:o
1.60.o
216.6

g

584
*

%J
.eln
.%

:Z
.767

l:E
1.38
1.71
2.L4

~;

8:25
10.8
39.2
23.6
40.5

P

l??
189
p

-# 3

88

1~
e
406

.-
JzN5

:3

“~

.538
;%

.974
l.ls
1.46
1.83
2.31
2.97
3.80
5.17
7.04

l.?::
20.4
34:

&
m
1.63
239

v

L~

1.38

1..41

L.47

—

e P
m
:225
.175 545

!.70 .03gl.

g $J

.
!.20 6.cF36
!.~ 7.78
!.00 9.
..go U. $
..80 13.5g
..70 1.5.g3
..60 18.47

:C z:
..30 28.76
..20 33.44

:% il%c
.x 55.79
.80 67.23
.W 83.8
.60 lfx.1

g g~

:Z E

.=5 3~

!.6 .-
!.55 .7U3
!.45 1.648
!.35 2.778
!.a 4.037
~.u 5.385
!.@ 6.86
..s 8.38
1.85 lo.qj
..75 11.87
..65 13.87

:?? z:~
..35 21.38
..s 24.83
..U 2&&
-m 33.78

:g W%
.m 57.*
.65 72.4

:5 g;

=5 &

!.60 .031g

;$ <~
!.30 2.

M 2:%
!.00 6.q
..9 7.39
..80 8.82

%
m

OoM
.m
4648
.In6
.1663
.~

:%
.574
.
.E
1.03
1.26
1.5g
2.00
2.57

t%
6.UI
8.0

IL5
17.7

“$
73

68

0o126
.(E42

:3
.2a?o
.263

:???

:?%
.736
.830
1.10
L*
1.73
2.23
2*88

;;:

1o:o
XJ.:

ill

.ixz7
WJl;

:%
=33

x

.. . .-..——.—.. _ . _ . .—. - ---- _. —- — —.. -.—



.

I

I u l-l w & 1

!2
“1

%

5

hi

II

g



mcll m 3723

TABLIZII.- !@, !@,AND Y ASl?UNCTKINSCIFW~

-3%

1.950

1.983

2.o16

2.046

--..——

e

1.00

:%1
2.05
1.95
1.85
l.m
1.65
1. 5
{1. 5

1.35
1.25
1.15
l.w
.95
.85

2.00
1.go
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00
.90

1.95
1.85

:Z
1. 5
z

;:3?
1.25
1.15
l.~

●95

1.90
1.80
1.70
1.60
1. 0
1.?0
1.30
1.20
1.10
1.00

————

!$

2.92
3.23
3.65

.OXLO
.193
.428
.680
.93
L.I.66
1.39
1.59
1.78
l.gg
2.19
2.40
2.65

●W
.1P
.378
●597
.8u
L.007
1.19
1.35
1.50
1.65
1.81
1.97

.Om
.151
.330
.516
.695
.855
1.00
1.I.2
1.23
1. 5
1.L

.o~
.133
.288
.447
-596
.726
.84
.93

z

Y = 1.405)- Concluded

!#
m
3.03
3.41

.0107
.M8
.416
.659
.900
L.124
1.34
1.53
1.70
1.88
2.08

::%

.%

.368

.579

.784

i~4
1.29
1.43
1.57
l.p
1.86

.0086
.147
.321
.X1
.672
.822

1.08
1.17
1.28
1.39

.0077
.130
.281
.434
.576
.699
.81
.89
.96
1.04

——

Y

-zqr
.171
.2U

)00039
.0067
.0151
.0245
.0343
.0443
.0540
A%g

.0878
.103

:$

t00036
.0060
.0134
.cQ15
.0299
.0384
.0463
●W%
.0641
.0737
.0!361
.101

,00032
.0053
.0117
.0187
.0257
.0326
.0388
.0462
.0532
.0609
.0707

.00028
.0047
.0102
.0162

:%
.0327

a
.0 6

&

w

2.077

2.105

2.133

2.161

2.M7

2.233.

2.234

Zlbm

2.280

e

iziy
l.n

1.65
1. 5
z1= 5

1.35
1.25
1.15
l.~

1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10

1.n
1.65
1.55
1.45
1.35
1.25
1.15

1.70
1.60
1.50
1.40
1.30
1.20

1.65
1.55
1.45
1.35
1.25

1.60
1.50
1.4.0
1.30

c;: ;
1.35

1.50
1.40

A!&

55

0 (Aa = 100, As = 1000,

1?

.Cm’&

.249

.382
-w
.605
.69
.76
.81

.0061
.100
.211
.321
.4d
.4$%
.56
.60

.oW&

.178

.268

. 44
?0
:&

.00h6
.072
.14$)
.214
.278
.31.8

.0040
.060
.124
.17g
.223

.0034
●m
.102
.145

.0029
.041
.081

.0024
.033

.0020

f

nmr
.113
.242
.n.
k

:J
.67
.73
●77

.m9
;~~

:%
.478
.%
.58

●y
2.17

.260

.333

.3$

.0045
.070
.145
.214
.269
●3W

.-
.W9
.I.20
.174
.21.5

.004
o?
:2
.141

.0028
.040
.079

.oa23
.032

.0019

Y

.00025
.0041
.o@8
.0138
.o18?
.-
.W70
.0318
.0359

.0ux2
●W5
●Pn5
.0xL6
.0155
.Olgl
.0220
.@57

.Ooolg
.0030
.0063
:=

.0155

.ol’@

.00017
.0025
.0053
.MO
.0104
.0124

.00014
.Co21
.0044
.0C65
.0C83

.00032
.0018
.0036
.0053

.Ooo11
.0015
.Ooa

.Oooog
.Oo1.2

.00007

——.. .-—



56 NM!llTM 3723

_ 111.-x/c AND y/c AS l?tJl?CTICtWCW r ON LIlfCl!INGCHA.RAC!CERISTIC.
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